Class 11 Math



Class 11

Q1: Solve all parts:
(A) If A={2,3,5}A = \{2, 3, 5\}, then the number of subsets of AA are:
(a) 3 (b) 32 (c) 6 (d) 8

(B) sin20sin40sin60sin80=\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ =
(a) 116\frac{1}{16} (b) 316\frac{3}{16} (c) 316-\frac{3}{16} (d) None

(C) Number of terms in the expansion of (1+3x+3x2+x3)10(1 + 3x + 3x^2 + x^3)^{10} is:
(a) 31 (b) 32 (c) 10 (d) 11

(D) The mm-th term of an A.P. is 1n\frac{1}{n}, and the nn-th term is 1m\frac{1}{m}. Its (mn)(mn)-th term is:
(a) mnmn (b) 1mn\frac{1}{mn} (c) 1 (d) None

(E) If the slope of a line passing through the points (x,1)(x, 1) and (3,5)(-3, 5) is 43\frac{4}{3}, then x=?x = ?:
(a) -4 (b) 4 (c) -6 (d) 6


Q2: Solve all parts:
(a) If (4x+3,y)=(3n+5,2)(4x+3, y) = (3n+5, -2), find xx and yy.
(b) Prove that sin105+cos105=cos45\sin 105^\circ + \cos 105^\circ = \cos 45^\circ.
(c) limx0tanxx=?\lim_{x \to 0} \frac{\tan x}{x} = ?
(d) Convert 5+4i45i\frac{5+4i}{4-5i} into the form A+iBA + iB.
(e) Find the probability of getting a head in a toss of one coin.


Q3: Solve all parts:
(a) Convert i9+i19i^9 + i^{19} into the form a+iba + ib.
(b) If n(A)=8,n(B)=6n(A) = 8, n(B) = 6, and n(AB)=3n(A \cap B) = 3, then find n(AB)n(A \cup B).
(c) Find the domain and range of f(x)=1x2f(x) = \frac{1}{x-2}.
(d) Evaluate tan13π12\tan \frac{13\pi}{12}.


Q4: Solve all parts:
(a) Find limx1xm1xn1\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}.


Q5: Solve all parts:
(a) If for x0,af(x)+bf(1x)=1x+5x \neq 0, af(x) + bf\left(\frac{1}{x}\right) = \frac{1}{x} + 5, aba \neq b, then find f(x)f(x).
(b) Find the domain and range of the real function f(x)=x1f(x) = \sqrt{x - 1}.
(c) Find the value of 1+i5+i10+i151 + i^5 + i^{10} + i^{15}.


Q6: Solve all parts:
(a) Find the modulus of 1+i1i1i1+i\frac{1+i}{1-i} - \frac{1-i}{1+i}.
(b) Solve 13<π243<16-\frac{1}{3} < \frac{\pi}{2} - \frac{4}{3} < \frac{1}{6}.
(c) If np4:np2=1:2n_p^4 : n_p^2 = 1:2, then find the value of nn.
(d) How many numbers of 7 digits can be formed with the digits 1,2,2,0,1,1,31, 2, 2, 0, 1, 1, 3?
(e) Prove that r=0n3r(nr)=4n\sum_{r=0}^n 3^r \binom{n}{r} = 4^n.


Q7: Solve all parts:
(a) Two subjects are compulsory for a student in an examination.
In how many ways can a student select 5 subjects out of 10 subjects?
(b) Solve for xx, x237(3x+5)9x8(x3)x^2 - 37 - (3x+5) \geq 9x - 8(x - 3).
(c) If y=n+2n+3n+y = n + 2^n + 3^n + \dots and n(1,1)|n| (1, 1), then prove that n=512n = \frac{5}{12}.
(d) Find the distance on xx-axis, which is equidistant from the points (7,6)(7, 6) and (3,4)(3, 4).
(e) Find the equation of the hyperbola if foci (±5,0)(\pm 5, 0) and transverse axis is equal to 8.


Q8: Find the angles between the lines 3x+y=1\sqrt{3}x + y = 1 and x+3y=1x + \sqrt{3}y = 1.


Q9: Find the value of limx0sinnxsinx\lim_{x \to 0} \frac{\sin nx}{\sin x}.


Q10: A fair coin with 1 marked on one face and 6 on the other, and a fair die are both tossed. Find the probability that the sum of numbers that turn up is:
(i) 3
(ii) 12

Comments